Теорема о сумме углов треугольника

Теорема о сумме внутренних углов треугольника
Сумма углов треугольника равна 180°.
Доказательство:
- Дан треугольник АВС.
- Через вершину B проведем прямую DK параллельно основанию AC.
- \angle CBK= \angle C как внутренние накрест лежащие при параллельных DK и AC, и секущей BC.
- \angle DBA = \angle A внутренние накрест лежащие при DK \parallel AC и секущей AB. Угол DBK развернутый и равен
- \angle DBK = \angle DBA + \angle B + \angle CBK
- Так как развернутый угол равен 180 ^\circ, а \angle CBK = \angle C и \angle DBA = \angle A, то получим 180 ^\circ = \angle A + \angle B + \angle C.
Теорема доказана
Следствия из теоремы о сумме углов треугольника:
- Сумма острых углов прямоугольного треугольника равна 90°.
- В равнобедренном прямоугольном треугольнике каждый острый угол равен 45°.
- В равностороннем треугольнике каждый угол равен 60°.
- В любом треугольнике либо все углы острые, либо два угла острые, а третий — тупой или прямой.
- Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Теорема о внешнем угле треугольника
Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом
Доказательство:
- Дан треугольник АВС, где ВСD — внешний угол.
- \angle BAC + \angle ABC +\angle BCA = 180^0
- Из равенств угол \angle BCD + \angle BCA = 180^0
- Получаем \angle BCD = \angle BAC+\angle ABC.
Дополнительный материал: Теорема Пифагора
Смотри также: Основные формулы по математике
Как вы считаете, материал был полезен?