Строение электронных оболочек атомов элементов первых четырёх периодов: s-, p-, d-элементы

Тема строения атома – это место встречи химии и квантовой физики. В атоме всё подчиняется строгим законам, но в то же время атом не совсем понятен для человеческого ума. Например, количество электронов строго равно количеству протонов, но невозможно точно сказать, в каком месте атома находится электрон. Шрёдингер рассматривал электрон как облако с отрицательным зарядом. Большинство своего времени электрон в отдельном участке атома – орбитали.

Все электроны в атоме расположены на своём расстоянии от ядра – в электронной оболочке. Электрон не может приблизиться к ядру, но и отдалиться тоже не может. Дело в том, что у электрона есть свой запас энергии. Чем её меньше, тем ближе от ядра располагается электрон. Электроны с одинаковым уровнем энергии группируются в один слой – энергетический уровень.

Главное квантовое число и энергетический уровень

Квантовые числа — это своеобразный код записи положения электрона в атоме. Если сравнить атом с домом, то квантовые числа – это адрес электрона: этаж, квартира, комната.

Электроны в атоме сосредоточены на энергетических уровнях – «этажах». Их нумеруют числами 1, 2, 3, … или буквами K, L, M, N, O, P, Q. Главное квантовое число n – это и есть номер энергетического уровня.

С удалением от ядра число электронов возрастает. Чем выше энергетический уровень, тем больше электронов на нём находится. Их максимальное число для каждого уровня определяется по формуле:

N = 2n2

  • N – максимальное число электронов
  • n – номер уровня (главное квантовое число)

На внешнем энергетическом уровне не может находиться больше 8 электронов. 

В энергетических уровнях также выделяют подуровни. Их количество также соответствует главному квантовому числу. Это напоминает расположение квартир в доме: на первом этаже располагается одна квартира, на втором – две, на третьем – три и т.д.

Номер уровня (n) и его буквенное обозначение Количество подуровней Максимальное количество электронов на уровне
1 К 1 (s) 2
2 L 2 (s, p) 8
3 M 3 (s, p, d) 18
4 N 4 (s, p, d, f) 32

 

Орбитальное (побочное), магнитное квантовые числа и форма орбитали

Конкретное место в атоме, «комната», в которой почти постоянно находится электрон, называется орбиталью. Орбитали напоминают облака разной формы из электронов. Подуровни и форму орбиталей обозначают латинскими буквами: s, p, d, f.

Подуровни и форму орбиталей обозначают латинскими буквами: s, p, d, f.

Эту схему предложил Бор, она помогает разобраться в строении атома, но не отражает реальной картины. Наши представления об атоме расходятся с реальностью. И выглядит это примерно так:

Три изображения атома

На первом энергетическом уровне есть только сферическая s-орбиталь. На втором энергетическом уровне появляются три p-орбитали. Их форма напоминает гантель или восьмёрку. На третьем энергетическом уровне уже есть пять d-орбиталей, которые как бы состоят из нескольких лепестков. На четвёртом уровне возникают семь f-орбиталей.

Форму орбиталей обозначают орбитальным (побочным) квантовым числом l (эль). Оно на единицу меньше главного квантового числа, то есть l = n – 1. Тогда получается, что орбитальное число единственной s-орбитали первого энергетического уровня равно нулю. Орбиталь p имеет число 1, орбиталь d – 2, f – 3.

Но как же располагаются орбитали внутри одного подуровня? Дело в том, что движущийся электрон создаёт магнитное поле, в котором по осям x, y, z ориентируются орбитали.

Сферическая s-орбиталь не имеет ориентации в пространстве. Три p-орбитали располагаются в трёх различных проекциях, d – в пяти, f – в семи проекциях. Другими словами, сколько орбиталей одного типа, столько и проекций.

Магнитное квантовое число ml показывает, какие проекции есть у орбитали. Количество таких вариантов определяется по формуле 2l+1.

Для s-орбитали l = 0 и ml = 0, так и получается, что сфера принимает только одно положение в пространстве.

Для p-орбитали l = 1, ml принимает три значения -l, 0, +l. При l = 3, магнитный момент принимает семь (2l + 1 = 7) значений: -3, -2, -1, 0, +1, +2, +3.

Орбитально квантовое число I Магнитное квантовое число II Число орбиталей 2l + 1
0 (s) 0 1
1 (p) -1, 0, 1 3
2 (d) -2, -1, 0, 1, 2 5
3 (f) -3, -2, -1, 0, 1, 2, 3 7

Форма орбиталей

Спин электрона

Еще два квантовых числа – спиновое и проекция спина – характеризуют уникальное квантовое свойство электрона. Спин не имеет аналогов в классической механике. Можно представить, что электрон вращается вокруг своей оси в одну или другую сторону.

Квантовые числа

Главное квантовое число n = 1, 2, 3, …  Определяет общую энергию электрона на данной орбитали. 
Орбитальное (побочное) квантовое число l (любое целое число от 0 до n-1, где n — главное квантовое число. Показывает различия в энергетическом состоянии электронов внутри одного уровня. Форма атомной орбитали.
Магнитное квантовое число  ml = от -1 до +1, включая 0, т.е. (2l + 1) значений. Ориентация орбитали в пространстве.
Спиновое квантовое число m  
Проекция спина ms Показывает направление вращения электрона в атоме

В атомах первого периода таблицы Менделеева есть один энергетический уровень. В нём один или два электрона движутся по s-единственной орбитали.

В атомах второго периода появляется второй уровень. Он состоит из s-и p-подуровней. Второй s-подуровень – это тоже s-орбиталь, на p-подуровне есть три орбитали, которые по-разному расположены в пространстве. Каждая p-орбиталь вмещает 1 или 2 электрона, поэтому максимально на p-подуровне их может быть 6.

В атомах третьего периода появляется d-подуровень с пятью d-орбиталями, в атомах четвёртого периода – f-подуровень с семью f-орбиталями.

Как заполняются орбитали?

Электроны заполняют орбитали в соответствии с 3 принципами (правилами).

  1. Принцип минимума энергии. Электрон «стремится» занять положени в атоме с наименьшей энергией. То есть электроны сначала «заселяют» низкоэнергетические орбитали. Рейтинг желаемых орбиталей выглядит так: 1s22s22p63s23p64s23d104p65s24d1066s25d14f14... 
    Как будто электроны сначала выбирают малозаселённые этажи с небольшим количеством квартир.

  2. Принцип Паули. В атоме не может быть двух электронов с одинаковыми свойствами. То есть на каждой орбитали может находиться либо один неспаренный электрон, либо два электрона с разными спинами. Это похоже на дорогу с двусторонним движением: либо едет один автомобиль, либо два, но навстречу друг другу.

  3. Правило Хунда. Наиболее устойчивое (основное) состояние атома достигается тогда, когда на одном уровне находится как можно больше неспаренных электронов. Можно провести такую аналогию: электроны сначала селятся по одному, а потом ищут себе пару.
14 сентября 2020, 15:05

Комментарии

Для добавления комментариев необходимо авторизоваться.