Вход   →

Основные формулы теории вероятности

23 февраля 2018

Классическое определение вероятности

Случайное событие – любое событие, которое может произойти, а может и не произойти в результате какого-либо опыта.

Вероятность события р равна отношению числа благоприятных исходов k к числу всевозможных исходов n, т.е.

p=\frac{k}{n}

 


Формулы сложения и умножения теории вероятности

Событие \bar{A} называется противоположным событию A, если не произошло событие A.

Сумма вероятностей противоположных событий равна единице, т.е.

 

P(\bar{A}) + P(A) =1

  • Вероятность события не может быть больше 1.
  • Если вероятность события равна 0, то оно не случится.
  • Если вероятность события равна 1, то оно произойдет.

Теорема сложения вероятностей:

«Вероятность суммы двух несовместимых событий равна сумме вероятностей этих событий.»

 

P(A+B) = P(A) + P(B)

 

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без учета их совместного появления:

 

P(A+B) = P(A) + P(B) - P(AB)


Теорема умножения вероятностей

«Вероятность произведения двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную при условии, что первое имело место.»

 

P(AB)=P(A)*P(B)



События называются несовместными, если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

События называются совместными, если наступление одного из них не исключает наступления другого.

Два случайных события А и В называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. В противном случае события А и В называют зависимыми.

Смотри также: Основные формулы по математике

 

Решай с разбором:

Еще нет аккаунта?

Пользователям Бингоскул доступна бесплатная подготовка к ЕГЭ по всем видам ФИПИ, просмотр решений и отслеживание статистики
Регистрация

Уже зарегистрированы?

Авторизуйтесь в своей учетной записи, чтобы получить доступ к расширенным возможностям функционала сайта
Вход

Вход в систему

Регистрация

Регистрируясь, я подтверждаю своё согласие с условиями пользовательского соглашения

Активация аккаунта

Спасибо за регистрацию
Мы отправили письмо на указанный электронный адрес.
Чтобы завершить регистрацию, проверьте почтовый ящик и перейдите по ссылке в письме.